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Abstract. We explicitly present a scheme for quantum state sharing of an arbitrary multiqubit state
using nonmaximally entangled GHZ states as the quantum channel and generalized Bell states as the
measurement basis. The scheme succeeds only probabilistically with its total success probability depending
on the degree of entanglement matching between the quantum channel and the generalized Bell states.
Security of the scheme is guaranteed by the fact that attacks of an outside eavesdropper or/and an inside
dishonest party will inevitably introduce detectable errors.

PACS. 03.67.Hk Quantum communication – 03.67.Dd Quantum cryptography – 03.65.Ud Entanglement
and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.)

QICS. 21.20.+s Quantum secret sharing / data hiding

1 Introduction

In classical secret sharing (see, e.g., [1,2]) a secret infor-
mation is distributed among a number of users such that
certain sufficiently large sets of users are able to access
the information, but any smaller sets of them can by no
means gain the meaning of the shared secret. This crypto-
graphic task has been recognized as a powerful technique
in information and computer sciences which enables secure
and robust communication in relevant networks. However,
the challenging problem of eavesdropping cannot be de-
feated efficiently by the classical dealing with secret shar-
ing because any classical secret distributions can be eaves-
dropped perfectly without tracks left behind. In addition,
it is impossible in principle to figure out existence of dis-
honest users, if any. Therefore, to guarantee an absolute
security one should process the task in a quantum way,
making use of laws of quantum physics.

Quantum secret sharing (QSS) is the generalization of
classical secret sharing [1,2] into quantum scenario firstly
by using three-particle and four-particle Greenberger-
Horne-Zeilinger (GHZ) states [3]. After that a great deal
of QSS schemes were proposed and most of them are fo-
cused on dealing with sharing a classical secret in terms
of a classical message [4–13]. Since many applications in
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quantum information science require distribution of quan-
tum states, there are also a lot of QSS schemes dealing
with sharing a quantum secret in terms of a quantum
state (see, e.g., [14–16,18–22]). This kind of sharing quan-
tum information is referred to as quantum state sharing
(QSTS) to differentiate from the QSS of classical infor-
mation. The simplest case of QSTS concerning a single-
qubit state was considered in references [3,16]. In refer-
ence [3], a single-qubit state is split among two parties
by means of the GHZ state served as the quantum chan-
nel and the QSTS is processed by performing Bell-state
measurements. Instead of using a GHZ state as the quan-
tum channel, in reference [16], a single-qubit state can
be distributed among two parties by using two Einstein-
Podolsky-Rosen (EPR) pairs [17]. However, to implement
the scheme of [16] the multipartite joint measurements are
demanded. Since then several schemes were proposed for
QSTS of an arbitrary N -qubit state with N ≥ 2 [19–22].
In [19,20] the QSTS schemes of an arbitrary 2-particle
state were presented by using EPR pairs as the quantum
channels. For instance, for Alice to securely share an ar-
bitrary 2-qubit secret state with her two remote parties,
Bob and Charlie, four EPR pairs are consumed with the
condition that both Bob and Charlie should be equipped
with a perfect Bell-state analyzer. In case such a condi-
tion cannot be met, i.e., when Bob and Charlie are both
technically limited, the schemes in [19,20] will not work.
However, if the quantum channels in terms of GHZ states
are used, this case turns out to be successful [21,22] again.
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Namely, though in [21,22] two GHZ states play the role
of the quantum channels, Bob and Charlie are only re-
quired to carry out single-qubit von Neumann projective
measurements, which are technically much easier than the
joint 2-qubit Bell-state measurements. Nevertheless, it is
worth noting that, in references [21,22] the quantum chan-
nel used is assumed maximally entangled. Since genera-
tion and distribution of maximally entangled states are
commonly recognized as a difficult (expensive) task due
to errors in the production process or/and in the process
of state transmission, of more practical interest is the di-
rect use of nonmaximally entangled states as the quantum
channel to achieve a task. This important idea was indeed
exploited for various cryptographic tasks such as telepor-
tation [23–25], QSTS [26], etc. In reference [26], schemes
of QSTS for a single-qubit state were presented by using
nonmaximally entangled states as the quantum channels.

In this work we consider the general case of QSTS of
an arbitrary N -qubit state using N nonmaximally entan-
gled GHZ states as the quantum channel. The N -qubit
secret state can be reconstructed with unit fidelity by
any receiver, who is chosen randomly by the sender, pro-
vided that the other receiver agrees to collaborate. Al-
though using nonmaximally entangled quantum channels
is more practical, the price to pay for faithful QSTS is
that the success probability is always less than unity,
i.e., the scheme becomes probabilistic rather than deter-
ministic. We work out explicitly which kinds of measure-
ments/operations should be performed by the authorized
parties to achieve the task with an optimal success proba-
bility. We also propose a quantum way by means of addi-
tional decoy qubits to protect the scheme from an outside
eavesdropper as well as from an inside cheater.

Our paper is structured as follows. In Section 2 we
present in full detail the QSTS for the case of N = 2, for
clarity. Section 3 outlines the scheme for the general case
of an arbitrary N ≥ 2. Finally, we conclusion in Section 4.

2 Quantum state sharing of an arbitrary
2-qubit state

For clarity, let us first consider in full detail the case of
N = 2. Suppose that Alice is a technically powerful party
who is capable of producing/distributing GHZ states as
well as of performing any general 2-qubit joint measure-
ments, but her two remote parties, Bob and Charlie, are
technically limited being equipped with facilities which al-
low only for single-qubit measurements/operations. Now,
Alice has an arbitrary 2-qubit secret state

|S〉12 = α|00〉12 + β|01〉12 + γ|10〉12 + δ|11〉12, (1)

with its secrecy contained in the coefficients α, β, γ and
δ (|α|2 + |β|2 + |γ|2 + |δ|2 = 1) and she wishes to send
this state to Bob and Charlie in such a way that only
one of them (who will be selected at random by Alice)
is able to faithfully reconstruct the state with the help
of the other party, regardless of possible existence of any
outside eavesdropper and/or inside cheater. Such a task

can be done with unit success probability if Alice, Bob and
Charlie priorly share a pair of maximally entangled Bell
states [19,20] or GHZ states [21,22]. To be more practical,
here we are interested in the circumstances when the two
shared GHZ states are nonmaximally entangled which are
of the form (i ∈ {1, 2})

|Q〉AiBiCi = µ|000〉AiBiCi + ν|111〉AiBiCi , (2)

where the coefficients µ, ν satisfy the normalization condi-
tion |µ|2 + |ν|2 = 1 and µ, ν �= 1/

√
2. We assume that the

states |Q〉AiBiCi are prepared/distributed by Alice and
thus the values of µ, ν are known to her (but not neces-
sarily known to Bob and Charlie).

As will be seen clearer later, here the usually used mea-
surements in the standard Bell-state basis do not suit our
problem. Hence, instead of the standard Bell states, we
define another complete orthonormal set of four states,
called generalized Bell states, which for a system of two
arbitrary qubits X and Y are given by

|B00〉XY = a |00〉XY + b |11〉XY , (3)
|B01〉XY = c |01〉XY + d |10〉XY , (4)
|B10〉XY = d |01〉XY − c |10〉XY , (5)
|B11〉XY = b |00〉XY − a |11〉XY , (6)

where |a|2 + |b|2 = |c|2 + |d|2 = 1 and XY 〈Bii′ |Bjj′ 〉XY =
δii′δjj′ . We assume that Alice is able to perform
a generalized-Bell-state measurement (GBM) which is
meant as a projective measurement onto one of the four
generalized Bell states given by equations (3)–(6), with
choice of the parameters a, b, c and d being at her disposal.

A particular issue in the secret sharing problem is that
one (and only one) of Bob and Charlie may be dishonest,
but Alice does not know precisely who of them is the dis-
honest one. The purpose of the dishonest party is to obtain
Alice’s secret state alone (even when he/she has not been
assigned by Alice to reconstruct it) or to supply wrong in-
formation so that the other party cannot obtain the right
state. These kinds of dishonesty of an inside party as well
as eavesdropping of an outside party (called Eve) can be
detected in our QSTS scheme which goes through several
steps as follows.
Step 1. Suppose that Alice has a pair of nonmaximally

entangled GHZ states in the form (2). To achieve her
goal, she also prepares 4L (L is an integer large enough
to ensure a required level of security) decoy single-
qubits (served as checking qubits) {qB

i , qC
i , pB

i , pC
i }

(i = 1, 2, ..., L) such that q
B(C)
i is randomly in one of

the four states {|0〉, |1〉, |˜0〉, |˜1〉} and p
B(C)
i is randomly

in one of the two states {|˜0〉, |˜1〉}, where |˜0〉 and |˜1〉 are
the two orthonormal states in the x-basis

|˜0〉 =
1√
2
(|0〉 + |1〉), (7)

|˜1〉 =
1√
2
(|0〉 − |1〉). (8)

Then Alice randomly sends qubits B1, B2, {qB
i }, {pB

i }
to Bob and C1, C2, {qC

i }, {pC
i } to Charlie (see Fig. 1a).
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Fig. 1. A qubit is represented by a solid circle and an entanglement between qubits by solid lines. The checking qubits are
omitted to avoid prolix. (a) After step 1 Alice holds a 2-qubit secret state |S〉12 while Alice, Bob and Charlie share two
nonmaximally entangled GHZ states |Q〉A1B1C1 and |Q〉A2B2C2 ; (b) after Alice’s GBMs with outcomes {i, j} and {k, l}, the
qubits B1, B2, C1 and C2 become entangled with each other; (c) after Bob’s single-qubit measurements on qubits B1, B2 with
outcomes {m, n}, Charlie’s two qubits are left in an entangled state |Φijklmn〉 that contains full information of Alice’s original
secret state.

It is important to note that although the qubits are
sent out in a random order, the sending order is pre-
cisely known to Alice but not to anyone else.

Step 2. After Bob and Charlie confirm that they have
received all the qubits, Alice reveals the position of
the checking qubits {qB

i } and {qC
i } and asks Bob and

Charlie to measure them in the appropriate bases (i.e.,
in those they have been prepared by Alice) and then
announce her their results. Through a careful statis-
tical analysis of the measurement outcomes for the
checking qubits {qB

i , qC
i }, Alice is able to assess the

error rate of secure sharing of the quantum channel.
If it exceeds a predetermined threshold, she decides to
abort the scheme. Otherwise, she proceeds to the next
step.

Step 3. Alice makes two GBMs, one on the qubit pair
{1, A1} and the other on {2, A2}, with the outcomes
{i, j} and {k, l} if she finds |Bij〉1A1 and |Bkl〉2A2, re-
spectively. Thanks to multipartite entanglement swap-
ping [27], after the GBMs the four qubits B1, B2, C1

and C2 are projected onto a genuine four-partite en-
tangled state characterized by α, β, γ and δ. That is,
the information of Alice’s original quantum secret state
has been transferred to the state of qubits B1, B2, C1

and C2 (see Fig. 1b).
Step 4. Alice randomly selects either Bob or Charlie to

reconstruct her secret state (the selection should not
be learn beforehand by neither Bob nor Charlie). For
concreteness, let Charlie be selected by Alice (The case
when Bob is selected is similar because of the Bob-
Charlie symmetry in this problem). If so, Alice asks
Bob to measure all the L+2 remaining qubits (i.e., the
two qubits B1, B2 and the L checking qubits {pB

i }) in
the x-basis then publicly announce all his results. Note
that Bob cannot distinguish between the L + 2 qubits
but Alice can because she knows the order in which
she has sent them out. Just for illustration, let the
order be {pB

1 , pB
2 , ..., pB

L , B1, B2} and Bob’s measure-
ment results be {r1, r2, ..., rL, m, n} (ri, m, n ∈ {0, 1})

if Bob finds |r̃1〉pB
1
, |r̃2〉pB

2
, . . ., |r̃L〉pB

L
, |m̃〉B1 and |ñ〉B2 ,

respectively. Then, through a careful analysis of the
measurement results {ri} for the checking qubits {pB

i },
Alice is able to assess the error rate caused by Bob’s
dishonesty. If it exceeds a predetermined threshold, she
decides to abort the scheme. Otherwise, she accepts
that Bob has not cheated, i.e., the qubit B1 has been
in the state |m̃〉B1 and the qubit B2 in the state |ñ〉B2.
As a consequence, Charlie’s two qubits C1 and C2 will
collapse onto the state |Φijklmn〉C1C2 which is of the
form

|Φijklmn〉C1C2 = ξijklmn |00〉C1C2 + ζijklmn |01〉C1C2

+ σijklmn |10〉C1C2 + τijklmn |11〉C1C2 (9)

where the coefficients ξijklmn , ζijklmn , σijklmn and
τijklmn are determined by Alice’s and Bob’s measure-
ment outcomes (see Fig. 1c). Evidently, after this step
Alice’s secret information has been contained in the
state |Φijklmn〉C1C2 of Charlie’s qubits.

Step 5. Since like Bob Charlie has no idea about the or-
der of her L + 2 qubits {pC

i }, C1 and C2, Alice pub-
licly reveals Charlie the precise position of the qubits
C1 and C2 followed by her and Bob’s measurement
outcomes (which is a classical message) in the form
{ijklmn} according to which Charlie is able to trans-
form |Φijklmn〉C1C2 to the desired state |S〉C1C2 by ap-
plying an appropriate unitary operator UC1C2

ijklmn (to be
specified later) on her two qubits C1 and C2.

Although using nonmaximally entangled quantum chan-
nels is more practical than using maximally entangled
ones, the price to pay for faithful QSTS is that the success
probability is always less than unity, i.e., the scheme be-
comes probabilistic rather than deterministic. To elucidate
this point let us write the total state |T 〉12A1B1C1A2B2C2

=
|S〉12 |Q〉A1B1C1 |Q〉A2B2C2 of the secret state and the
quantum channels in terms of the generalized Bell states
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Table 1. The correspondence between the coefficients ξijklmn, ζijklmn, σijklmn and τijklmn of state |Φijklmn〉C1C2 (see Eq. (10))
and the measurement outcome {ijklmn}.
Case # ijklmn ξijklmn ζijklmn σijklmn τijklmn

1 000000 a2αµ2 abβµν abγµν b2δν2

2 000001 a2αµ2 −abβµν abγµν −b2δν2

3 000010 a2αµ2 abβµν −abγµν −b2δν2

4 000011 a2αµ2 −abβµν −abγµν b2δν2

5 000100 acβµ2 adαµν bcδµν bdγν2

6 000101 acβµ2 −adαµν bcδµν −bdγν2

7 000110 acβµ2 adαµν −bcδµν −bdγν2

8 000111 acβµ2 −adαµν −bcδµν bdγν2

9 001000 adβµ2 −acαµν bdδµν −bcγν2

10 001001 adβµ2 acαµν bdδµν bcγν2

11 001010 adβµ2 −acαµν −bdδµν bcγν2

12 001011 adβµ2 acαµν −bdδµν −bcγν2

13 001100 abαµ2 −a2βµν b2γµν −abδν2

14 001101 abαµ2 a2βµν b2γµν abδν2

15 001110 abαµ2 −a2βµν −b2γµν abδν2

16 001111 abαµ2 a2βµν −b2γµν −abδν2

17 010000 acγµ2 bcδµν adαµν bdβν2

18 010001 acγµ2 −bcδµν adαµν −bdβν2

19 010010 acγµ2 bcδµν −adαµν −bdβν2

20 010011 acγµ2 −bcδµν −adαµν bdβν2

21 010100 c2δµ2 cdγµν cdβµν d2αν2

22 010101 c2δµ2 −cdγµν cdβµν −d2αν2

23 010110 c2δµ2 cdγµν −cdβµν −d2αν2

24 010111 c2δµ2 −cdγµν −cdβµν d2αν2

25 011000 cdδµ2 −c2γµν d2βµν −cdαν2

26 011001 cdδµ2 c2γµν d2βµν cdαν2

27 011010 cdδµ2 −c2γµν −d2βµν cdαν2

28 011011 cdδµ2 c2γµν −d2βµν −cdαν2

29 011100 bcγµ2 −acδµν bdαµν −adβν2

30 011101 bcγµ2 acδµν bdαµν adβν2

31 011110 bcγµ2 −acδµν −bdαµν adβν2

32 011111 bcγµ2 acδµν −bdαµν −adβν2

Case # ijklmn ξijklmn ζijklmn σijklmn τijklmn

33 100000 adγµ2 bdδµν −acαµν −bcβν2

34 100001 adγµ2 −bdδµν −acαµν bcβν2

35 100010 adγµ2 bdδµν acαµν bcβν2

36 100011 adγµ2 −bdδµν acαµν −bcβν2

37 100100 cdδµ2 d2γµν −c2βµν −cdαν2

38 100101 cdδµ2 −d2γµν −c2βµν cdαν2

39 100110 cdδµ2 d2γµν c2βµν cdαν2

40 100111 cdδµ2 −d2γµν c2βµν −cdαν2

41 101000 d2δµ2 −cdγµν −cdβµν c2αν2

42 101001 d2δµ2 cdγµν −cdβµν −c2αν2

43 101010 d2δµ2 −cdγµν cdβµν −c2αν2

44 101011 d2δµ2 cdγµν cdβµν c2αν2

45 101100 bdγµ2 −adδµν −bcαµν acβν2

46 101101 bdγµ2 adδµν −bcαµν −acβν2

47 101110 bdγµ2 −adδµν bcαµν −acβν2

48 101111 bdγµ2 adδµν bcαµν acβν2

49 110000 abαµ2 b2βµν −a2γµν −abδγ2

50 110001 abαµ2 −b2βµν −a2γµν abδγ2

51 110010 abαµ2 b2βµν a2γµν abδγ2

52 110011 abαµ2 −b2βµν a2γµν −abδγ2

53 110100 bcβµ2 bdαµν −acδµν −adγν2

54 110101 bcβµ2 −bdαµν −acδµν adγν2

55 110110 bcβµ2 bdαµν acδµν adγν2

56 110111 bcβµ2 −bdαµν acδµν −adγν2

57 111000 bdβµ2 −bcαµν −adδµν acγν2

58 111001 bdβµ2 bcαµν −adδµν −acγν2

59 111010 bdβµ2 −bcαµν adδµν −acγν2

60 111011 bdβµ2 bcαµν adδµν acγν2

61 111100 b2αµ2 −abβµν −abγµν a2δν2

62 111101 b2αµ2 abβµν −abγµν −a2δν2

63 111110 b2αµ2 −abβµν abγµν −a2δν2

64 111111 b2αµ2 abβµν abγµν a2δν2

(see Eqs. (3)–(6)) and the x-basis states (see Eqs. (7)
and (8)) as

|T 〉12A1B1C1A2B2C2 =
1
2

1
∑

i,j,k,l,m,n=0

|Bij〉1A1 |Bkl〉2A2

× |m̃〉B1 |ñ〉B2 |Φijklmn〉C1C2 . (10)

The explicit dependence of |Φijklmn〉C1C2 on {ijklmn} is
tabulated in Table 1.

The data in Table 1 show that for given quantum chan-
nels, i.e., for given µ and ν, success of the scheme is sen-
sitive to the parameters a, b, c and d, which Alice can
choose at her will to optimize the performance. In total,
there are 9 possible sets of choice for the parameters.

Choice 1. If a, b, c, d /∈ {µ, ν}, then the scheme fails abso-
lutely, i.e., pijklmn ≡ 0 for any i, j, k, l, m and n, where
pijklmn denotes the success probability corresponding
to the outcome {ijklmn}.

Choice 2. If a = ν, b = µ but c, d /∈ {µ, ν}, then the only
nonzero success probabilities are p0000mn = µ4ν4/4 for
any m, n ∈ {0, 1} leading to the total success proba-
bility P =

∑1
m,n=0 p0000mn = µ4ν4.

Choice 3. If a, b /∈ {µ, ν} but c = ν, d = µ, then the only
nonzero success probabilities are p0101mn = µ4ν4/4 for
any m, n ∈ {0, 1} leading to the total success proba-
bility P =

∑1
m,n=0 p0101mn = µ4ν4.

Choice 4. If a, b /∈ {µ, ν} but c = µ, d = ν, then the only
nonzero success probabilities are p1010mn = µ4ν4/4 for
any m, n ∈ {0, 1} leading to the total success proba-
bility P =

∑1
m,n=0 p1010mn = µ4ν4.

Choice 5. If a = µ, b = ν but c, d /∈ {µ, ν}, then the only
nonzero success probabilities are p1111mn = µ4ν4/4 for
any m, n ∈ {0, 1} leading to the total success proba-
bility P =

∑1
m,n=0 p1111mn = µ4ν4.

Choice 6. If a = c = ν and b = d = µ, then the only
nonzero success probabilities are p0j0lmn = µ4ν4/4 for
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Table 2. Correspondence between the successful measurement outcomes {ijklmn}, Charlie’s collapsed states |S′〉C1C2
and the

respective unitary operators UC1C2
ijklmn.

Case # ijklmn |S′〉C1C2
UC1C2

ijklmn

1 000000 (α |00〉 + β |01〉 + γ |10〉 + δ |11〉)C1C2 IC1 ⊗ IC2

2 000001 (α |00〉 − β |01〉 + γ |10〉 − δ |11〉)C1C2 IC1 ⊗ σC2
z

3 000010 (α |00〉 + β |01〉 − γ |10〉 − δ |11〉)C1C2 σC1
z ⊗ IC2

4 000011 (α |00〉 − β |01〉 − γ |10〉 + δ |11〉)C1C2 σC1
z ⊗ σC2

z

5 000100 (β |00〉 + α |01〉 + δ |10〉 + γ |11〉)C1C2 IC1 ⊗ σC2
x

6 000101 (β |00〉 − α |01〉 + δ |10〉 − γ |11〉)C1C2 IC1 ⊗ iσC2
y

7 000110 (β |00〉 + α |01〉 − δ |10〉 − γ |11〉)C1C2 σC1
z ⊗ σC2

x

8 000111 (β |00〉 − α |01〉 − δ |10〉 + γ |11〉)C1C2 σC1
z ⊗ iσC2

y

9 010000 (γ |00〉 + δ |01〉 + α |10〉 + β |11〉)C1C2 σC1
x ⊗ IC2

10 010001 (γ |00〉 − δ |01〉 + α |10〉 − β |11〉)C1C2 σC1
x ⊗ σC2

z

11 010010 (γ |00〉 + δ |01〉 − α |10〉 − β |11〉)C1C2 iσC1
y ⊗ IC2

12 010011 (γ |00〉 − δ |01〉 − α |10〉 + β |11〉)C1C2 iσC1
y ⊗ σC2

z

13 010100 (δ |00〉 + γ |01〉 + β |10〉 + α |11〉)C1C2 σC1
x ⊗ σC2

x

14 010101 (δ |00〉 − γ |01〉 + β |10〉 − α |11〉)C1C2 σC1
x ⊗ iσC2

y

15 010110 (δ |00〉 + γ |01〉 − β |10〉 − α |11〉)C1C2 iσC1
y ⊗ σC2

x

16 010111 (δ |00〉 − γ |01〉 − β |10〉 + α |11〉)C1C2 iσC1
y ⊗ iσC2

y

any j, l, m, n ∈ {0, 1} leading to the total success prob-
ability P =

∑1
j,l,m,n=0 p0j0lmn = 4µ4ν4.

Choice 7. If a = c = µ and b = d = ν, then the only
nonzero success probabilities are p1j1lmn = µ4ν4/4 for
any j, l, m, n ∈ {0, 1} leading to the total success prob-
ability P =

∑1
j,l,m,n=0 p1j1lmn = 4µ4ν4.

Choice 8. If a = d = ν and b = c = µ, then the only
nonzero success probabilities are pi0k0mn = µ4ν4/4 for
any i, k, m, n ∈ {0, 1} leading to the total success prob-
ability P =

∑1
i,k,m,n=0 pi0k0mn = 4µ4ν4.

Choice 9. If a = d = µ and b = c = ν, then the only
nonzero success probabilities are pi1k1mn = µ4ν4/4 for
any i, k, m, n ∈ {0, 1} leading to the total success prob-
ability P =

∑1
i,k,m,n=0 pi1k1mn = 4µ4ν4.

After analyzing the choices above, two important obser-
vations are in order. The first one is that the scheme can
never be of a 100% probability of success, i.e., it is only
probabilistic. The second, more interesting, one is that
the success probability is nonzero only when there exists
a matching between the quantum channel (characterized
by µ, ν) and the GBM (characterized by a, b, c, d). In other
words, if there are no relations between µ, ν and a, b, c, d,
then the scheme fails absolutely, as seen from the choice 1.
However, if there exist relations between µ, ν and a, b, c, d,
then the scheme succeeds probabilistically, as verified from
the choices 2 to 9. Furthermore, the actual value of total
success probability P is governed by the degree of match-
ing. More precisely, if the GBM just half-matches with the
quantum channel, as in the choices 2 to 5, the total suc-
cess probability is just P = µ4ν4. Yet, Alice can increase
P four times if she adjusts the parameters a, b, c, d so that
they fit either one of the choices 6 to 9, which means a
full-matching between the GBM and the quantum chan-
nel. Physically, the above-mentioned matching is associ-
ated with the amount of entanglement, i.e., the amount of

ebit, possessed by the quantum channel and the general-
ized Bell states. The GBM does not match the quantum
channel at all when the amount of ebit of all the four
generalized Bell states differs from that of the quantum
channel (choice 1). If the quantum channel and two (of
the four) generalized Bell states possess the same amount
of ebit, as for the choices 2 to 5, then a half-matching re-
sults. Finally, a full-matching occurs when the amount of
ebit of both the quantum channel and each (of the four)
generalized Bell state becomes equal, as in the choices 6
to 9. At this point we would like to emphazise the role of
the GBM which is compulsorily necessary in our scheme
based on nonmaximally entangled quantum channels. In
fact, employing the standard Bell-state measurement (i.e.,
with a = b = c = d = 1/

√
2) will always lead to a failure

since this corresponds to the choice 1.

Having known of how to optimally manage the GBM
let us concentrate on the choice 6 for which the total suc-
cess probability is maximal (similar analysis goes with
the other three optimal choices 7, 8 or 9). The corre-
spondence between the successful measurement outcome
{ijklmn}, the measurement-induced Charlie’s collapsed
state |S′〉C1C2

and the respective unitary operator UC1C2
ijklmn

that Charlie needs to apply on the |S′〉C1C2
to convert it

into the desired state |S〉C1C2
is represented in Table 2.

From Table 2 we see that UC1C2
ijklmn = uC1

ijklmn ⊗
vC2

ijklmn with uC1
ijklmn, vC2

ijklmn ∈ {ICi, σCi
x , iσCi

y , σCi
z } for

any i, j, k, l, m, n. This implies that Charlie only needs
single-qubit operations. It is interesting to notice that for
this choice 6 the scheme succeeds only when i = k = 0,
i.e., right after her GBM, Alice is conclusively aware of
whether the scheme would succeed or not. This fact sug-
gests an economical management of the classical commu-
nication. Namely, the whole 6 bits {ijklmn} of the full
set of the measurement outcome need not to be published.
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Instead, the parties make use of the following strategy. In
step 3, after Alice performs the GBMs, if she does not ob-
tain i = k = 0, she informs Bob and Charlie that the task
has been failed. Otherwise, Alice continues but in step 5
she needs to announce just four bits {jlmn} for Charlie to
get the secret state using the corresponding unitary oper-
ator listed in Table 2. It is also worth noting that in our
scheme knowledge of the quantum channel (i.e., the value
of µ and ν) is not necessary for both Bob and Charlie.
The only required technique is that they are capable of
performing single-qubit von Neumann measurements and
single-qubit unitary operations. Compared with the EPR
pairs based schemes [19,20], where Bob and Charlie must
be equipped with a Bell-state analyzer, this is an apparent
advantage in situations when Bob and Charlie are techni-
cally limited.

Next we discuss on security of our protocol. In gen-
eral, attacks may come from an outside eavesdropper Eve
or/and from an inside dishonest party. The attempt of
Eve is to get Alice’s secret state by herself. Since Eve
can by no means distinguish the checking qubits {qB

i , qC
i }

from the qubits B1, B2, C1, C2, to gain useful informa-
tion, Eve must attack all of them. For example, she might
capture all the qubits sent out by Alice and then sends
her own fake qubits to Bob and Charlie instead. This at-
tack should however be disclosed with a high probability
in step 2 because there are no correspondences between
states of the fake qubits prepared by Eve and the check-
ing qubits {qB

i , qC
i } prepared by Alice. Actually, any at-

tacks Eve would adopt should introduce errors into the
checking qubits and can thereby be detected through an-
alyzing the error rate due to them. Concerning the inside
parties, one of them may be dishonest. One aim of the
dishonest party is to obtain the secret state alone even
when he/she has not been assigned by Alice to recon-
struct it. To achieve this goal, the dishonest party cap-
tures all the qubits sent out by Alice and then sends the
other party his/her fake ones. Similar to the case of an
outside Eve, because the dishonest party does not know
in which states Alice’s checking qubits {qB(C)

i } have been
prepared, his/her fake qubits have no relations with them
and therefore the attack must be detected in step 2 as well.
Being aware of that, the dishonest party, when not being
selected to reconstruct the secret state, may still want to
derange the honest one from obtaining the correct state
by cheating, i.e., by publishing the wrong measurement
results. Such a kind of attack is also detectable in step
4 when Alice analyzes the published measurement results
{ri} of the checking qubits {pB(C)

i }. As a matter of fact,
the chance for Eve and the dishonest party to escape from
their attacks can be made arbitrarily small by increasing
L, i.e., the number of the decoy checking qubits. Further-
more, if no attacks have been made at all, the probability
for a party to obtain the secret state at his/her hands is
just 50%, since which one of the two parties to reconstruct
the state is randomly selected by Alice, as was mentioned
before. If Alice’s secrecy consists of a set of many different
secret states, each party will on average obtain only one
half of the set. Thus to access the entire Alice’s secrecy

the two parties still have to cooperate again at the final
stage after the whole secret sharing process ends. This is
another figure of merit that increases the security of the
QSTS scheme.

3 Quantum state sharing of an arbitrary
N-qubit state

We now generalize our scheme to the N -qubit case with
an arbitrary N ≥ 2. Suppose that Alice has an arbitrary
N -qubit secret state that she would like to send to Bob
and Charlie in such a way that they must cooperate in
order to faithfully reconstruct this state. The secret state
can generally be represented as

|S〉12...N =
1

∑

i1,i2,...,iN=0

αi1i2...iN |i1, i2, . . . , iN 〉12...N , (11)

where 1, 2, . . . , N label the N qubits in the state |S〉12...N

and
∑1

i1,i2,...,iN =0 |αi1,i2,...,iN |2 = 1. The general QSTS
scheme can be outlined as follows.

GS1. Alice has N nonmaximally entangled GHZ
states |Q〉AjBjCj in the form (2) with j =
1, 2, ..., N . In addition, she prepares 4L single check-
ing qubits {qB

i , qC
i , pB

i , pC
i } (i = 1, 2, ..., L) such

that qB,C
i is randomly in one of the four states

{|0〉, |1〉, |˜0〉, |˜1〉} and pB,C
i is randomly in one of the

two states {|˜0〉, |˜1〉}. Then Alice sends out the qubits
B1, B2, ..., BN , {qB

i }, {pB
i } to Bob and the qubits

C1, C2, ..., CN , {qC
i }, {pC

i } to Charlie (see Fig. 2a) in
a random order that she secretly records for a later
use.

GS2. The same as in step 2 of the scheme for N = 2.
GS3. Alice makes N GBMs on the qubit pairs {1, A1},

{2, A2}, ..., and {N, AN} with the outcomes {k1, l1},
{k2, l2}, ..., and {kN , lN} if she finds |Bk1l1〉1A1 ,
|Bk2l2〉2A2 , ..., and |BkN lN 〉NAN , respectively. Due to
multipartite entanglement swapping, after the N
GBMs the 2N qubits B1, B2, ..., BN , C1, C2, ..., and
CN are projected onto a genuine 2N -partite entangled
state characterized by 2N coefficients αi1i2...iN that
carry full information of Alice’s original quantum se-
cret state (see Fig. 2b).

GS4. Alice randomly selects either Bob or Charlie to re-
construct her secret state. Let Charlie be the selected
one. If so, Alice asks Bob to measure the remain-
ing L + N qubits {pB

i , }, B1, B2, ..., BN all in the x-
basis then publicly announce his results. Because Alice
knows the precise order in which the L+N qubits have
been sent out, she is able to evaluate Bob’s honesty
through a careful analysis of Bob’s measurement re-
sults for the checking qubits {pB

i }. If she finds out that
Bob is dishonest she aborts the scheme. Otherwise, she
accepts that Bob’s results for the qubits B1, B2, ...,
and BN are true which we denote by {m1, m2, ..., mN}
if B1, B2, ..., and BN have been found in the states
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Fig. 2. A qubit is represented by a solid circle and an entanglement between qubits by solid lines. The checking qubits
are omitted to avoid prolix. (a) After GS1 Alice holds a N-qubit secret state |S〉12...N while Alice, Bob and Charlie share
N nonmaximally entangled GHZ states |Q〉AjBjCj with j = 1, 2, ..., N ; (b) after Alice’s N GBMs with outcomes {k1, l1},
{k2, l2}, ... and {kN , lN}, the qubits B1, B2, ..., BN and C1, C2, ..., CN become entangled with each other; (c) after Bob’s single-
qubit measurements on qubits B1, B2, ..., BN with outcomes {m1, m2, ..., mN}, Charlie’s N qubits are left in an entangled state
|Φk1l1...kN lN m1...mN 〉C1C2...CN that contains full information of Alice’s original secret state.

|m̃1〉B1 , |m̃2〉B2 , ..., and |m̃N〉BN , respectively. As a
consequence, Charlie’s N qubits C1, C2, ..., CN will
collapse onto the state |Φk1l1...kN lN m1...mN 〉C1C2...CN

which is of the form

|Φk1l1...kN lN m1...mN 〉C1C2...CN =

1
∑

i1,i2,...,iN=0

xk1l1...kN lN m1...mN

i1...iN

× |i1, i2, ..., iN 〉C1C2...CN (12)

with the coefficients xk1l1...kN lN m1...mN

i1...iN
being deter-

mined by Alice’s and Bob’s measurement outcomes
(see Fig. 2c).

GS5. Alice publicly broadcasts the precise position of the
qubits C1, C2, ..., CN at Charlie’s hands as well as her
and Bob’s measurement outcomes (which is a classi-
cal message) in the form {k1l1k2l2...kN lNm1m2...mN}
according to which Charlie is able to transform
|Φk1l1k2l2...kN lN m1m2...mN 〉C1C2...CN to the desired state
|S〉C1C2...CN by applying on the qubits C1, C2, ..., CN

an appropriate unitary operator

UC1C2...CN

k1l1k2l2...kN lN m1m2...mN
=

⊗N
i=1 u(i)Ci

k1l1k2l2...kN lN m1m2...mN
(13)

with

u(i)Ci

k1l1k2l2...kN lN m1m2...mN
∈ {ICi, σCi

x , iσCi
y , σCi

z }.
(14)

Clearly, as in the case N = 2, in the general scheme both
Bob and Charlie need not to know the quantum channels
and all what they need is the capacity of performing single-
qubit measurements and single-qubit operations. The se-
curity of the general scheme against Eve and a dishonest
party is also ensured by the checking procedures described
in step GS2 and step GS4.

4 Conclusion

In conclusion, we have presented in full detail a quan-
tum state sharing scheme of arbitrary 2-qubit state using
two nonmaximally entangled three-partite GHZ states and
measurements in the generalized Bell-state basis. The ran-
domly chosen one among Bob and Charlie is able to recon-
struct Alice’s original secret state in cooperation with the
other party with unit fidelity at the cost of less than unit
success probability. For given quantum channels, i.e., for
given parameters µ and ν, success of the scheme is sensi-
tive to the generalized Bell-state measurement parameters
a, b, c and d, which Alice can choose at her will to opti-
mize the performance. Through analyzing the 9 possible
choices for the parameters a, b, c and d, we have found out
that the maximal total success probability P = 4µ4ν4 can
be achieved when the generalized Bell states fully match
the (nonmaximally entangled) quantum channel. In our
scheme neither Bob nor Charlie need to know the quantum
channels or to be capable of performing two-qubit joint
measurements/operations. This is particularly favorable
in circumstances when neither Bob nor Charlie are tech-
nically powerful. We have also proposed a security check-
ing method through which not only the outsider’s attacks
but also the insider’s cheating can be detected efficiently.
Generalization to the scheme for sharing an arbitrary N -
qubit with any N ≥ 2 between M = 2 parties have been
outlined as well. Extension to an arbitrary M ≥ 2 parties
is straightforward via (M + 1)-partite entangled state.
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